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Outline

• Experiments on  bacteria (polar particles)

• Theoretical concepts (inelastic polar rods) 

• Swirling of “apolar particels”

• Polarization of “active nematic” and 
swirling instability 
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Long-Range Order in System of Self-
Propelled Particles

• Particles move with constant speed 
• Align directions with neighbors
• Competition between alignment and noise
• Complex emergent behavior originates from simple rules 
• Anomalous fluctuations, phase transitions  
• Birds flocks, fish schools, elephant/moutons herds, nano-robots swarms
• Very stimulating but totally uncontrolled experiments

Gregoire & Chate, PRL 2004
Helbing, Farkas, Vicsek, Nature (2000) 
Ramaswami et al 

Moutons Starlings
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Self-organized emergent behavior 

Cytoskeleton (Microtubules, motors)  
Nedelec et al

Shaken rice  at Argonne  
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Self-Propelled BioParticles

• swimming bacteria Bacillus Subtilis

• length 5 µm, speed 20 µm/sec  

• collective flows up to 100 µm/sec
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Complicated Machines
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Bio-Convection and Large-Scale Coherence in 
“Flat” Sessile Drop

Bugs concentrate at the contact line

Dombrowski, Cisneros,Chatkaew, Goldstein, Kessler, PRL (2004) 
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Velocity Correlation Functions

Large-Scale Coherence – pure hydrodynamic interaction



9

Simulations of Swimming Dimers

force exerted by 
flagellum on cell body

force exerted by 
flagellum on fluid

effective volume fraction:

isolated swimmer speed:

• Body: bead-rod dumbbell,
length,  , bead friction  

• “Phantom” flagellum
• exerts equal and opposite

forces   on body and fluid
along axis of body

• No excluded volume except at 
walls

• Point-force low-Re hydrodynamics
• Neutrally buoyant
⇒ Far field flow is a stresslet

Michael Graham, PRL (2005) 
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Animation of Swimming Dimers
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Onset of Coherence at Large Density
(from Michael Graham)

Swimmer and tracer velocities (2H = 5)

Distinct onset of large velocities:
utracer~ uswimmer at transition

• Length scale increases

• At large concentration, fluctuations
span the box.

1/2
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Wu & Libchaber Experiment: Film Geometry

PRL (2000) 

Experimental Setup (E. coli)
Regular diffusion – low density 
Levi flights – high density 
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New Generation of Experiments

• Thin free-hanging film concept (Wu & 
Libchaber) but with important modifications

• Adjustable thickness

• Adjustable concentration of bugs
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Schematics of Experimental Setup

Film reduced  thickness (up to 1 micron)

Concept: Andrey Sokolov et al, ANL invention 2007
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pH-Taxis  & concentration of cells

1sec 20sec 80sec

density vs. time Concentrated bacteria

pH indicator (bromothynol blue) was added field of view
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Inelastic collisions between bacteria

Andrey Sokolov & Igor Aranson, ANL
Ray Goldstein & John Kessler, U Arizona 
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Collective Swimming: High Density
BIV- BioParticles-Image Velocimetery
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No Apparent Velocity-Orientation Correlation  
Velocity Field V Orientation Field  ττττ
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Velocity-Orientation Correlation Recovered
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Transition to Collective Swimming
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Theoretical Model 
• Microscopic interaction rules: 

-self-propulsion; hydrodynamically-induced inelastic collision/excluded  volume

-flow advection; direction realignment in shear flow

a b
5 µm

c

Inelastic collision of two bacteria
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Maxwell Model for Inelastic Particles 
inelastic grains

v1

v2

v=(v1+v2)/2

1 1

2 2

1

1

a b

a b

v v

v v

γ γ
γ γ

   − 
=    −    

va & vb velocities after/before  collision
γ=0 – elastic collisions
γ=1/2 – fully inelastic collision 
γ=1 – no interaction
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Probability distributions P(v)
• Collision rate g does not depend on relative velocity 

(Maxwell molecules)
• No spatial dependence 
• D- thermal diffusion, D ~T, T– temperature of heat bath  
• Binary uncorrelated fully inelastic collisions 

• Asymptotic distribution P(v)  is localized but not 
Gaussian, the width depends on the temperature 

• No phase transition, the diffusion can be scaled out
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Ben-Naim & Krapivsky, PRE 2000

source term sink term

heat bath
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Results for Maxwell Model 
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• Nice toy model: solution can be obtained analytically by 
the Fourier Transform of P(v)

• Asymptotic distribution P(v) is localized but not Gaussian, 
the width depends on the temperature 

• No phase transition, the diffusion can be scaled out
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Inelastic Collision of  Polar Rods 
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Probability distributions P(ϕ)

• Dr - thermal rotational diffusion  

• g=const– collision cross-section

• Main difference – integration over finite interval due to 2π
periodicity of the angle 

• Orientation instability with the increase of g!!!
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Macroscopic Variables  

• Density of MT

• Average orientationττττ=(τx,τy)

• “ Complex orientation”
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Coarse-Grained Equation

• Rigorous bifurcation analysis 

• Second order phase transition 

for ρ>ρc =1/0.273≈3.662
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Spatial Localization of Interaction

• W- interaction kernel, interaction between rods decay with 
the distance 

• Dij,Dr -translational and rotational diffusion of rods 

• v0 - propulsion velocity

• v,Ω – hydrodynamic velocity and vorticity

• E – strain rate tensor 
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The Diffusion Matrix in Kirkwood 
Approximation
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Theoretical Model 
• Microscopic interaction rules: 

-self-propulsion; inelastic collision

-flow advection; direction realignment in shear flow

-energy injection in the fluid due to swimming 

no-slip b.c. for the film



32

Results of Modeling

•Instability of uniform flow
•Mechanism: coupling between self-
propulsion and shear-induced  alignment  
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Experiment and Theory

Experiment                                                      Theory

ρ
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Swirling of apolar particles  
• Vibrated monolayer of a elongated particles (rice, pins, cylinders) 

• Vigorous high-frequency vibration (f ≈200 Hz, acceleration Γ~6 g) 

• Flat tips: tetratic states

• Tapered tips: nematic, smectic order and dynamics states 

• Swirling observed for rolling pins 

• Mechanism? Boundary effects? Defects Motion? 

Narayan, Menon, Ramaswami, 2006
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Swirling States: Apolar vs Self-Propelled Particles 

Swimming bacteria 
Sokolov, Aranson, Goldstein, Kessler

Vibrated jasmine rice 
freq f=129 Hz 

Apolar bioparticles Active self-propelled  particles
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Schematics of experimental setup

• electromechanical shaker

• open air cell 

• frequencies   f=100-200 Hz 

• accelerationsΓ=1.7-5 g
• sushi rice, aspect ratio L/d= 2 

• jasmine rice, L/d = 3.5-4

• Basmati rice, L/d=6-8

• dowel pins, L/D=4 

• mustard seeds, spherical 

• Particle tracking 

• PIV 

• 2 tri-axial accelerometers for 

all vibration components 

Techniques 

Particles
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Rigid-body rotation
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• Fast-forward videos 

• Resonance-like behavior at f=132 Hz 

• Switching states 

• Angular velocity increases with acceleration
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Swirling motion

• Rigid-body rotation superimposed with swirls

• Swirls become more pronounced with the decrease of rotation frequency  

a b

Raw PIV Bulk rotation subtracted
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Jasmine rice, f=142 Hz, ΓΓΓΓ=2 g, filling fraction about 80%
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Horizontal acceleration – the main cause of the rotation
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• Tangential Γt and normal Γn accelerations coincide in both locations 

• Primary motion of plate: vertical vibration and twisting 

• Resonance peak at f≈132 Hz (shaker specific)
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Properties of dilute gas of particles 

• Experiments with a few  grains only 

• Extracted long trajectories

• Measured velocity vs angle ϕ
• Monomers and dimers (catamarans) 
• Dynamics: diffusion and drift 

a b

dc

snapshots             trajectories 
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Anisotropic friction tensor 
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Theoretical Model 
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Connection  with the Ginzburg-Landau Model
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Relative strength of swirls exhibits similar behavior
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Theory Experiment 

•Horizontal acceleration is cause of bulk rotation
•Anisotropic friction is the cause of swirling motion  
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Swirling motion: Theory

director field velocity field 
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Conclusions

• Equations are derived from microscopic interaction rules 

• Reasonable agreement with experiment 

• Applications for biological and non-biological systems: 

-bacterial colonies  

-cytoskeleton dynamics  

-self-propelled particles (vibrated rods, etc)


